Tetrahedron Letters Vol. 21, pp 3779 - 3782 ©Pergamon Press Ltd. 1980. Printed in Great Britain 0040-4039/80/0922-3779\$02.00/0

o-silylated ketene acetal chemistry¹; β - (alkoxycarbonyl) methyl o-silyl enolates, useful synthons for α -substituted- β - (alkoxycarbonyl) methylalkanones

> Y. Kita, J. Segawa, J. Haruta, T. Fujii, and Y. Tamura Faculty of Pharmaceutical Sciences, Osaka University 133-1, Yamada-kami, Suita, Osaka, Japan

Summary: Conjugate addition of O-silylated ketene acetals $\underline{2}$ to α,β -unsaturated carbonyl compounds $\underline{1}$ in acetonitrile gave quantitative yields of the corresponding β -(alkoxycarbonyl)methyl O-silyl enolates $\underline{4}$. Site specific electrophilic substitutions of $\underline{4}$ yielded the corresponding a-substituted β -(alkoxycarbonyl)-methylalkanones $\underline{5}, \underline{7}$, and $\underline{8}$.

We report here a new effective procedure for the regiospecific assembly of α -substituted β -(alkoxycarbonyl)methylalkanones <u>5</u>, <u>7</u>, and <u>8</u> through β -(alkoxy-carbonyl)methyl 0-silyl enolates <u>4</u>. The procedure is illustrated in Scheme 1.

It involves the conjugate addition of O-silylated ketene acetals $\underline{2}$ to α,β unsaturated carbonyl compounds $\underline{1}$, followed by reaction with electrophile to the O-silylated adducts $\underline{4}$.

Preparation of β-(Alkoxycarbonyl)methyl O-Silyl Enolates 4

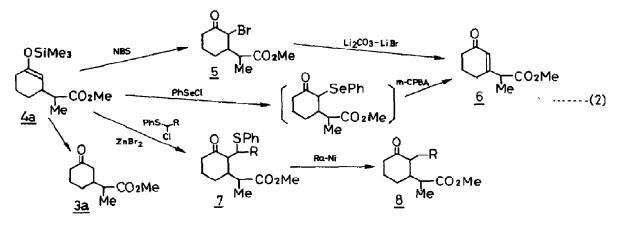
The Michael addition of O-silylated ketene acetals $\underline{2}$ with α,β -unsaturated carbonyl compounds $\underline{1}$ was known not to proceed.² Recently, Mukaiyama and coworkers have succeeded in reacting the acetals $\underline{2}$ with $\underline{1}$ by an activation method using titanium tetrachloride,^{3,4} which gives β -(alkoxycarbonyl)methylalkanones $\underline{3}$. We now found that the use of acetonitrile as a solvent can greatly enhance the reactivity of $\underline{2}$ toward $\underline{1}$ without any catalyst to give almost quantitative yields of the corresponding O-silylated Michael adducts $\underline{4}^5$ in place of their hydrolyzed ketones $\underline{3}$. The success of these procedures depends crucially on the use of acetonitrile as a solvent. Thus, when the reaction was performed in other solvents such as ether, tetrahydrofuran, benzene, carbon tetrachloride, and

methylene chloride, no satisfactory addition occurred.

A typical experimental procedure for the preparation of β -(alkoxycarbonyl)methyl O-silyl enolates <u>4</u> is as follows (entry 1). To a stirred solution of cyclohexenone (<u>1a</u>, 12.5 mmol) in dry acetonitrile (11 ml) was added ketene methyl trimethylsilyl acetal (<u>2a</u>, 12.5 mmol). After stirring at 55° for 2h, a small amount of <u>2a</u> (0.2 mmol) was added every 30 min for 1.5h to complete the reaction. The reaction mixture was concentrated *in vacuo* and distilled to give the pure Osilyl enolate <u>4a</u> [b.p. 140-145°/2.7 mmHg, δ (CC1₄) ppm: 0.17 (s, 9H, Me₃Si), 1.08 (d, 3H, CH₃CH), 0.83-2.70 (m, 8H, CH₂×3 and CH×2), 3.59 (s, 3H, OCH₃), and 4.58 (d, 1H, CH=), ν_{max} (CC1₄) 1740 and 1660 cm⁻¹, m/e 256 (M⁺), *Anal*. Calcd for C1₃H₂₄O₃Si: C, 60.88; H, 9.45. Found: C, 61.02; H, 9.60]. Hydrolysis of <u>4a</u> by the treatment with HCl-ether gave methyl 2-(3-oxocyclohexyl)propionate <u>3a</u>, which was identified with an authentic specimen.⁶

In a similar manner, several β -(alkoxycarbonyl)methyl O-silyl enolates <u>4</u> were obtained⁷ in excellent yields by the reaction of O-silylated ketene acetals $\underline{2}^8$ and α,β -unsaturated carbonyl compounds <u>1</u>. All these O-silyl enolate structures assigned to the products <u>4</u> are consistent with their IR, NMR, and Mass spectral data. A characteristic ¹H-NMR resonance at δ 4.38-5.4 of vinyl proton of an O-

Entry	Enone (<u>1</u>)	Ketene acetal	Product ^a (<u>4</u>)	Reaction Conditions	Yield ^b (%)	$v_{\max(\text{CCl}_4)}$
1		Me <u>2a</u> MeO OSiMe ₃	OSiMes	55°, 4h	96	1735, 1660
2			QSiMes MeCO2Me	55°, 4h	98	1735, 1640
³ м	le Ô	м	OSiMe3	55°, 5h	96	1740, 1665
р-С 4		p-Cl0	CeHe Me ^{CO₂Me}	55°,22h	99	1740, 1660
5 I	Ph Ph	F	OSIME3 Ph CO2Me Ph Me	55°, 8h	99	1740, 1645
6	Ô	Me0 OSI Me 2b	OSI Me CO ₂ Me	55°,12h	90	1740, 1665
7	ů		OSi Me CO2Et	55°,12h	90	1730, 1660


a) All these products gave satisfactory microanalyses: C ±0.37%; H ±0.29%.
b) The purity of the products was checked by G.L.C. and T.L.C.

3780

silyl enolate and an IR absorption at $1730-1740 \text{ cm}^{-1}$ of an ester moiety were observed. The results are summarized in the Table. These ketene acetals are found to be valuable equivalents of ester enolates in the Michael reaction.

Introduction of a-Substituent to the β -(Alkoxycarbonyl)methyl 0-silyl Enclates 4

Site specific attack of electrophile on the α -position of β -(alkoxycarbonyl)methyl O-silyl enolates <u>4</u> was established as outlined in Scheme 2. Strongly active electrophile⁹ such as N-bromosuccinic imide (NBS) or phenylseler chloride readily reacts with <u>4a</u> at room temperature for a short time in a normal solvent without catalyst. In the case of weakly active electrophile, anhydrous Lewis acid is required as shown in the α -alkylation of <u>4a</u>.

Treatment of <u>4a</u> (11 mmol) in dry acetonitrile (11 ml) with NBS (11.4 mmol) at room temperature for 15 min under argon gave a 66% yield of methyl 2-(2-bromo 3-oxocyclohexyl)propionate <u>5</u> [a mixture of cis/trans (4/5), v_{max} (CCl₄) 1730 cm⁻¹ cis-<u>5</u>: m/e 263 (M⁺), trans-<u>5</u>: m/e 263 (M⁺)], which was converted into methyl 2-(3 oxocyclohexenyl)propionate <u>6</u> [67% yield from cis-<u>5</u>, 68% yield from trans-<u>5</u>, v_{max} (CCl₄) 1630, 1675, 1740 cm⁻¹, 6 (CCl₄) ppm, 1.31 (d, 3H, J 7, CHCH₃), 1.50-2.50 (m, 6H, CH₂×3), 3.23 (q, 1H, J 7, CHCH₃), 3.62 (s, 3H, OCH₃), and 5.74 (s, 1H, CH=), m/e 182 (M⁺), Anal. Calcd for C₁₀H₁₄O₃: C, 65.92; H, 7.74. Found: C, 65.54 H, 7.87] by the treatment with Li₂CO₃-LiBr in DMF (21 ml) at 100° for 5h. The same enone <u>6</u> was obtained by a similar reaction involving site-specific α-phenylselenylation of <u>4a</u> (1.36 mmol) with PhSeCl (1.36 mmol) in methylene chloride (5 ml) at room temperature for 15 min followed by oxidative syn-elimination using m-chloroperbenzoic acid (2.7 mmol) in methylene chloride (15 ml). The over-all yield of <u>6</u> from <u>4a</u> was 51%.

Introduction of primary alkyl group to the α -position of <u>4a</u> was successful with the Lewis acid-prompted phenylthicalkylation using α -chloroalkylphenyl-sulfide, followed by the Raney-nickel desulfurization.¹⁰ A catalytic amount of powdered anhydrous ZnBr₂ (ca. 20 mg) was added to a solution of α -chloroethyl-phenylsulfide (4.9 mmol) and <u>4a</u> (3.7 mmol) in dry methylene chloride (7 m1).

The mixture was stirred at 15° for 30 min and concentrated in vacuo to give the crude a-phenylthioethyl ketone $\frac{7}{2}$ [R=CH₃, a mixture of cis and trans isomers,¹¹ v_{max} (CCl₄) 1740 and 1710 cm⁻¹, m/e 321 (M⁺)], which was submitted to the reductive desulfurization with W-2 Raney-nickel in ethanol at room temperature for 30 min, followed by purification with column chromatography on silica gel (benzene:ethyl acetate=10:1 as eluents) to give methyl 2-(2-ethyl-3-oxocyclohexyl)propionate <u>8</u> [R=CH₃, a mixture of cis and trans isomers, ¹¹ 41% over-all yield from 4a, v_{max} (CCl₄) 1735 and 1705 cm⁻¹, m/e 212 (M⁺), Anal. Calcd for C12H20O3: C, 67.88; H, 9.51. Found: C, 67.82; H, 9.69].

References and Notes

- 1 For a previous paper in this series, see: Y. Kita, J. Haruta, J. Segawa, and Y. Tamura, Tetrahedron Lett., 1979, 4311.
- 2 The aldol condensation of 0-silylated ketene acetals 2 with carbonyl compounds was also known not to proceed except for aromatic aldehydes. Only aromatic aldehydes can react with 2 under vigorous conditions (at 150° for 18h), giving moderate yields of the products; P.L. Creger, Tetrahedron Lett., 1972, 79.

- 3 K. Saigo, M. Osaki, and T. Mukaiyama, Chem. Lett., 1975, 989.
 4 K. Saigo, M. Osaki, and T. Mukaiyama, Chem. Lett., 1976, 163.
 5 The Michael adducts could be trapped by the intermolecular transfer of the mobile trialkylsilyl substituent since the reaction was performed in the absence of Lewis acid.
- 6 D.K. Banerjee and P.S. Halwe, J. Ind. Chem. Soc., 37, 669 (1960). 7 Following two approaches (i and ii) were examined for the preparation of 4abut failed: i) A conjugate addition of the lithio methyl propionate to cyclobut failed: 17 A conjugate addition of the fithio methyl propromate to cyclo-hexenone <u>la</u> at room temperature followed by the treatment with trimethylsilyl chloride [cf. A conjugate addition of alkyl group and subsequent silylation was reported: J.W. Patterson, Jr. and J.H. Fried, J. Org. Chem., <u>39</u>, 2506 (1974)] and ii) Direct silylation of the ketoester <u>3a</u> into its O-silyl enolate <u>4a</u> by the House's methods using LDA/trimethylsilyl chloride and triethylamine/DMF/ trimethylsilyl chlbride [H.O. House, L.J. Czuba, M. Gall, and H.D. Olmstead,
- J. Org. Chem., 34, 2324 (1969)]. 8 The ketene acetals 2b and 2c were obtained in 72 and 71% yields, respectively The ketene acetals $\underline{2p}$ and $\underline{2c}$ were obtained in /2 and /1% yields, respectively according to the previously reported methods [C. Ainsworth, F. Chen, and Y.N. Kuo, J. Organometal. Chem., 46, 59 (1972), M.W. Rathke and D.F. Sullivan, Synth. Common., 3, 67 (1973)]: $\underline{2b}$; b.p. 76-76.5°/24 mmHg, v_{max} (CCl4) 1645 cm⁻¹, δ (CCl4) ppm 0.14 (s, 6H, Me2Si), 0.93 (s, 9H, t-Bu), 2.95 (d, 1H, J 2.5, CH=), 3.10 (d, 1H, J 2.5, CH=), and 3.49 (s, 3H, OCH₃), m/e 188 (M⁺). 2c; b.p. 67-68°/10 mmHg, v_{max} (CCl4) 1645 cm⁻¹, δ (CCl4) ppm 0.16 (s, 6H, Me2Si), 0.93 (s, 9H, t-Bu), 1.30 (t, 3H, J 7, CH₂CH₃), 2.92 (d, 1H, J 2.5, CH=), 3.08 (d, 1H, J 2.5, CH=), and 3.68 (q, 2H, OCH₂), m/e 202 (M⁺).
- 9 The reaction of 0-silyl enolates with strongly active electrophile such as PhSCl, PhSeBr or NBS in a normal solvent in the absence of catalyst has been reported; reaction with PhSCl; S, Murai, Y. Kuroki, K. Hasegawa, and S. Tsutsumi, J. Chem. Soc. Chem. Commun., 1972, 946, reaction with PhSeBr; I. Ryu, S. Murai, I. Niwa, N. Sonoda, Synthesis, 1977, 874, reaction with NBS; R.H. Reuss and A. Hassner, J. Org. Chem., 39, 1785 (1974).
- I. Paterson and I. Fleming, Tetrahedron Lett., 1979, 995, and references cited 10 therein.
- 11 All efforts to separate the mixture failed.

(Received in Japan 23 June 1980)

3782